РЕКОНСТРУКЦИЯ МИНИМУМА ДАЛЬТОНА ПО 150-ЛЕТНЕЙ ГАРМОНИКЕ И ХАРАКТЕРИСТИКАМ ЦИКЛОВ ДОСТОВЕРНОГО РЯДА ЧИСЕЛ ВОЛЬФА

Игорь Шибаев

ИЗМИРАН, Троицк, Россия e-mail: ishib@izmiran.ru

Ключевые слова: Числа Вольфа, спектральный анализ, преобразование Гильберта.

Аннотация: Экстраполяция длиннопериодных компонент достоверного ряда чисел Вольфа на внешний временной интервал дает возможность для реконструкции или прогнозирования временной динамики ряда. Дополняя это статистическими характеристиками достоверных циклов и их амплитудно-временными соотношениями проведена реконструкция минимума Дальтона.

RECONSTRUCTION OF THE DALTON MINIMUM USING THE 150-YEAR HARMONIC AND CHARACTERISTICS OF RELIABLE SERIES OF WOLF NUMBERS

Igor Shibaev

IZMIRAN, Troitsk, Moscow, Russia e-mail: ishib@izmiran.ru

Keywords: Wolf's numbers, spectral analysis, Gilbert's transformation.

Abstract: Reconstruction of Dalton's minimum with use the long-period component and the statistical characteristics of cycles of reliable series of Wolf numbers is carried out.

Введение

При наличии достоверной информации (данных), на достаточно длительных пространственных или временных интервалах, возникает естественный вопрос о переносе (продлении) наиболее устойчивых и регулярных её признаков на внешний интервал. Т.е. экстраполяция этих свойств для пространственной зависимости и коррекция / прогнозирование в случае временной зависимости.

Интерес к традиционным индексам солнечной активности только возрастает. Мотивация этого, подробно изложенная в обзоре [1], актуальна и сейчас. Цюрихский ряд среднемесячных чисел Вольфа является наиболее представительным и широко используется в различных приложениях. Он включает достоверный ряд Wtool (регулярные инструментальные наблюдения с 1849 г. по настоящее время) и восстановленный ряд Wrest (с 1749 г. по 1849 г.). Свойства достоверного ряда, в первую очередь наличие длиннопериодной ~150 летней гармоники, служат основой для коррекции восстановленного ряда. Впервые это было использовано в работе [2] при рассмотрении достоверного ряда до 2005 г.

В данной работе анализируется ежемесячный ряд чисел Вольфа (W) в старой системе представления (www.sidc.be/silso/datafiles) вплоть до мая 2015 г., обзор которого дан на Рис. Зс. Используемые подходы и методы анализа, опирающиеся на гладкость соответствующих компонент, следуют публикации [3], в которой показаны существенные отличия в поведении достоверного и восстановленного рядов. Также разнятся статистические свойств циклов достоверного и восстановленного рядов, что отмечено в работе [4].

Работа также опирается на ряд чисел Вольфа, усредненный по 13 месяцам – W*. Напомним, что табличные характеристики циклов (максимальное значение, длительность цикла и длительность ветви роста) определяются по ряду W*.

Интервальные оценки рядов

Для оценки близости свойств Wrest и Wtool разобьем, по единому правилу, ряд W на интервалы и вычислим их параметры. Будем опираться на интервалы между явными минимумами для ряда W*, что соответствует циклам. Сопоставим общие характеристики циклов рядов Wrest и Wtool, т. е. групп циклов I ÷ IX и X ÷ XXIII. В таблице представлены среднее (mean), корень из дисперсии (σ½) и их отношение, вычисленные по группам, для максимальных значений циклов Wm, их длительностей Tc и ветвей роста Tm. Видно, что временные (Tc, Tm) параметры второй группы значительно лучше. К этому добавим, что у циклов I, V и VII аномально длинные ветви роста – более половины цикла.

	mean I ÷ IX / X ÷ XXIII	$\sigma^{1/2}$ I ÷ IX / X ÷ XXIII	$\sigma^{1/2}$ / mean I ÷ IX / X ÷ XXIII
Tc	134.33 / 131.21	19.00 / 10.07	0.141 / 0.077
Tm	58.00 / 47.43	17.77 / 6.41	0.306 / 0.135
Wm	105.58 / 119.66	40.16 / 38.02	0.380 / 0.318

Получим связь параметров цикла исходя из упрощенной модели ветвей роста и спада (Рис. 1а). В переменных β и β m имеем Tc = 2Wmsin β /(cos β +cos(β – 2 β m)). Эмпирические зависимости этих углов от Wm с их аппроксимацией [5] для циклов X–XXIII показаны на Рис. 1b. Оценивая длительности всех циклов и сопоставляя их с табличными вычислим относительные погрешности (*Tc*-Tc)/Tc (Рис. 1c).

Рис. 1. (a) – упрощенная модель цикла ; (b) – эмпирическая зависимость β и βm от Wm ; (c) – относительные погрешности табличных и эмпирических длительностей циклов

Погрешность для большинства циклов вписалась в 10% интервал, значительно отклонилась оценка циклов II, IV ÷ VI. Сопоставление сумм табличных и расчетных длительностей для 14 циклов ряда Wtool даёт 1837 и 1830 месяцев, а для 9 циклов ряда Wrest имеем соответственно 1209 и 1339 месяцев. В рамках проведенного анализа циклы III, VIII и IX остались «вне критики». Некоторое представление о «качестве» циклов VIII и IX можно получить оценивая корреляционную связь между Tm и Wm для двух вариантов сопоставления выборок : (I ÷ IX) & (X ÷ XXIII) ; (I ÷ VII) & (VIII ÷ XXIII). Для малых выборок и при отсутствии нормального распределения исследуемых величин более эффективным считается критерий Ширахатэ (S. Shirahate). В первом случае, с доверительной вероятностью α =0.95, признается отрицательная корреляция между Tm и Wm для обеих групп циклов. Во втором случае для циклов I ÷ VI эта связь фактически теряется, а для циклов VIII ÷ XXIII сохраняется, но ослабевает. Т. е. циклы VIII и IX улучшают качество циклов ряда Wrest и ухудшают для циклов ряда Wtool.

Критическое отношение к восстановленному ряду выражает ряд авторов в трудах симпозиума 1978 г. -- «Солнечно-земные связи, погода и климат» [6]. Попытка сбалансировать временные характеристики циклов ряда Wrest за счет «потерянного» цикла предпринята в работе [7]. Анализ фрактальных свойств ряда ширины годовых колец одиннадцати секвой представлен в работе [8]. Минимум Дальтона при данном подходе не проявился.

Временная динамика амплитуд основных спектральных компонент ряда Wtool

Исходя из характера спектра ряда Штоо, представленного на Рис. 2а, разумно разбить его на пять компонент Wtool = P1+P2+P3+P4+P5, спектральные интервалы которых соответствуют следующим временным периодам Т в годах : P1 => [24 < T] ; P2 => [6.8 < T < 24] ; P3 => [4.26 < T < 6.8]; P4 => [1.66 < T < 4.26]; P5 => [T < 1.66]. На рисунке отмечены основная частота f* = 0.007812 1/мес (ей соответствует период T* = 1 / f* = 128.0 мес) и её кратные гармоники. Обзор ряда P1 и рядов P2 ÷ P3 с огибающими дан на Рис. 2b ÷ 2d. Следуя публикациям [2,3] отметим кратко смысл компонент Р1 ÷ Р5. Амплитуды циклов и их длительность фактически описываются суммой рядов P1 и P2, ряд P3 корректирует ветви роста и спада, а составляющая Р4 трансформирует гладкий рельеф циклов за счет квазидвухлеток. Возможно появление локальных максимумов, влияние на положение основного максимума и нечеткая выраженность конца цикла, приобретающего более индивидуальный характер. Высокочастотный остаток P5 включает годовую и 155-d гармоники. Т.е. временная динамика солнечных циклов описывается, в основном, рядами P1 ÷ P3, а "энергию" циклов дает их сумма P13=P1+P2+P3. Сопоставление ряда P13 с ежемесячным рядом чисел Вольфа, усредненным по 13 месяцам W*, демонстрирует Рис. 2e. Видно хорошее совпадение представлений Р13 и W* для ежемесячного ряда чисел Вольфа Wtool.

Огибающие (амплитуды) компонент P2 и P3 (A[P2(Wtool)] и A[P3(Wtool)]), представленные на Puc. 2c÷2d, получены применением преобразования Гильберта к рядам P2 и P3. Преобразование Гильберта [9], традиционно используемое в радиотехнике и акустике, позволяет снять неопределенность при нахождении огибающей и фазы узкополосного сигнала, а по их гладкости оценивать характер процесса. На компоненту P1 хорошо наложились средние значения циклов (Puc. 2b), которые нанесены в моменты середины (по времени) циклов. По аналогии с огибающими A[P2(Wtool)] и A[P3(Wtool)] для компонент P2 ÷ P3, можно трактовать P1, как огибающую средних значений циклов. Видна высокая степень подобия в характере поведения ряда P1(t) и огибающих компонент P2 и P3.

Рис. 2. Спектр ряда Wtool (a) и обзор его компонент P1÷P3 (b,c,d) ; сопоставление рядов W* и P13 (e)

Длиннопериодные компоненты ряда Wtool, амплитудные и частотные свойства

Переход к медленно меняющимся функциям P1(Wtool), A[P2(Wtool)] и A[P3(Wtool)] позволяет сконструировать огибающую максимумов для циклов в представлениях P13 или W* : A[P13]=P1+A[P2]+A[P3], а учет близости, в характере их поведения, установить простые взаимосвязи между ними. Зависимость огибающей максимумов циклов A[P13(Wtool)] от огибающей средних значений циклов P1(Wtool), с соответствующей аппроксимирующей функцией, представлены на Рис. За, что дает возможность оценивать амплитуды циклов при

экстраполяции их средних значений на внешнюю временную область. Это удобно делать при интерполировании P1 синусом (P1_sin) с параметрами, определяемыми из максимума его корреляции с P1, при сканировании по частоте и фазе [3]. Результат интерполирования P1(Wtool) синусом демонстрирует Pис. 3b., где отображена и огибающая циклов A[P13(Wtool)]. Период синусоиды, в этом случае, равен 149 годам. При предыдущем анализе ряда, с 1849 г. по 2005 г., период равнялся 150 годам. Экстраполяция P1 sin на весь ряд отражена на Pис. 3c.

Кроме огибающих для компонент P2 и P3, используемых выше, преобразование Гильберта позволяет получить временную зависимость «мгновенных» частот в окрестности f* и 2×f*. В предыдущих публикациях отмечалось, что характеристика основной частоты f* с её вариациями должна отразиться в поведении «мгновенной» частоты F[P2] и её минимумы совпасть с самыми продолжительными циклами 13, 11 и 20 [2,3]. Данный анализ, включающий полностью 23 цикл, должен выделить его, как самый продолжительный цикл. Представленная на Рис. 4 временная динамика «мгновенной» частоты F[P2] отражает «иерархию» циклов по длительности.

Рис. 3. (а) – связь огибающей максимумы циклов (А13) и огибающей средние значения циклов (Р1); (b) – интерполяция синусом огибающей средних значений циклов (Р1), огибающая максимумы А13; (c) – экстраполяция синуса на весь ряд

Рис. 4. «Мгновенная» частота окрестности основной гармоники

Заключение

Анализ более длинного достоверного ряда чисел Вольфа (с 1849 г. по май 2015 г.) подтвердил разумность предложенного подхода, который позволил выделить «огибающую» средних значений циклов ряда Wtool и подтвердил возможность её аппроксимации 150-летней гармоникой. При экстраполяция этой гармоники на временную область ряда W**rest** получено наложение её максимума на минимум Дальтона. Для амплитудных характеристик циклов VIII и IX отмечена их близость к характеру поведения достоверных циклов, что говорит о согласованности W и 150-летней гармоники на интервале более 180 лет.

Литература:

- 1. Иванов Холодный, Г. С., В. Е. Чертопруд. Солнечная активность // Исследование космического пространства 1990. Т. 33. С.3-99. (Итоги науки и техники. ВИНИТИ АН СССР)
- 2. Ишков, В. Н., И. Г. Шибаев. Циклы солнечной активнрсти: общие характеристики и современные границы прогнозирования // Известия РАН, серия физическая. 2006. Т. 70, № 10. С. 1439-1442.
- 3. Шибаев, И. Г. Оценка восстановленной части ряда чисел Вольфа и возможность её коррекции // Астрономический вестник, 2008, Т. 42, № 1. С. 66-74.
- Shibaev, I., V. Ishkov Investigation of the statistical characteristics of Wolf numbers reliable series: Signs of solar cycles likelihood // Proceedings of Seventh Scientific Conference with International Participation SES 2011, Sofia, Bulgaria, 29 November – 01 December 2011, p. 297--301, 2012.
- 5. Шибаев, И. Г. Эмпирическая оценка длительностей циклов по их амплитудным характеристикам // Солнечно-земная физика, 2008, Вып. 12, Т. 1. С. 58–59.
- 6. Solar-Terrestrial Influences on Weather and Climate // Proceeding of a Symposium, The Ohio State University, Columbus, Ohio, 24-28 August 1978 // Dordrecht, Holland, 1979.
- 7. Usoskin, I. G., Mursula K., Kovaltsov G. A. The lost sunspot cycle: Reanalysis of sunspot statistics // A&A. 2003. V. 403. P. 743.
- 8. Отсука, К., Г. Корнелиссен, Ф. Халберг Хроном климатических измерений ширины древесных колец // Геофизические процессы и биосфера. 2009. Т. 8, № 1. С. 63–72.
- 9. Бендат ,Дж., А. Пирсол Прикладной анализ случайных данных. М.: Мир, 1989. 540 с.